Math 241 Winter 2023 Lecture 17

Feb 19-8:47 AM

$$
\begin{aligned}
& \text { Let's review complex numbers } \quad i=\sqrt{-1} \\
& \text { Complex number } \Rightarrow a+b i^{*} \quad i^{2}=-1 \\
& \begin{array}{c}
\uparrow \\
\text { Real } \\
I_{\text {imaginary }}
\end{array} \\
& \text { Part Part } \\
& \begin{aligned}
\text { ex: } & -2+8 i \\
-2 & \operatorname{Re} . \\
\hline 8 & \operatorname{Part}
\end{aligned}\left\{\begin{array} { l }
{ 3 - 4 i } \\
{ \operatorname { R e } \cdot \operatorname { P a r t } 3 } \\
{ \operatorname { I m } . \operatorname { P a r t } - 4 }
\end{array} \left\{\begin{array}{l}
-5 i \\
\operatorname{Re} \cdot \operatorname{Part} 0 \\
\operatorname{Im} \cdot \operatorname{Part}-5
\end{array}\right.\right. \\
& \text { Absolute value of } a+b i \\
& |a+b i|=\sqrt{a^{2}+b^{2}} \\
& \text { ex: find Abs. Value of }-8-6 i \text {. } \\
& \begin{array}{l}
\text { Re. Part }-8 \\
I_{m} \text {. Part }-6
\end{array} \quad|-8-6 i|=\sqrt{(-8)^{2}+(-6)^{2}}=10 \\
& \text { Given } Z=6-6 i \\
& \text { Re. Part }=6 \\
& |z|=\sqrt{(6)^{2}+(-6)^{2}}=\sqrt{72} \\
& =6 \sqrt{2}
\end{aligned}
$$

How to plot a complex number
Plot $5+2 i$
Plot $-3+7 i$
Plot -si
Plot $-5-4 i$
Plot 5-8i
Plot $-10+0 i$

Given $\quad Z=6-8 i$

1) Re. Part 6
2) In Part -8
3) Plot Z
4) Find $|z|=\sqrt{6^{2}+(-8)^{2}}$

Feb 1-7:19 AM

$$
\begin{aligned}
Z & =6 \operatorname{cis} 300^{\circ} \\
& =6\left[\cos 300^{\circ}+i \sin 300^{\circ}\right] \\
& =6\left[\cos 60^{\circ}+i \cdot-\sin 60^{\circ}\right] \\
& =6\left[\frac{1}{2}-i \cdot \frac{\sqrt{3}}{2}\right] \\
& =3-3 \sqrt{3} i^{\circ}
\end{aligned}
$$

$$
z=-4+3 i
$$

1) What Quadrant does z belong to? QII
2) $|z|=\sqrt{(-4)^{2}+3^{2}}=5$

$$
\sin R A=\frac{3}{5}
$$

3) Plot Z

$$
\begin{aligned}
z & =r(\cos \theta+i \sin \theta) \\
& =5\left(\cos 143^{\circ}+i \sin 143^{\circ}\right)=5 \operatorname{cis} 143^{\circ}
\end{aligned}
$$

$$
z=-2 \sqrt{3}-2 i
$$

1) Plot z
2) $|z|$

$$
|z|=\sqrt{(-2 \sqrt{3})^{2}+(-2)^{2}}
$$

$$
T=\sqrt{12+4}=4
$$

$$
\begin{aligned}
z & =r(\cos \theta+i \sin \theta) \\
& =4\left[\cos 210^{\circ}+i \sin 210^{\circ}\right] \\
& =4 \operatorname{cis} 210^{\circ}
\end{aligned}
$$

Feb 1-7:39 AM

$$
Z=5-5 i \quad \theta=360^{\circ}-45^{\circ}=315^{\circ}
$$

1) Plot z
2) $r=|z|=\sqrt{5^{2}+(-5)^{2}}=5 \sqrt{2}$
3) Express z in Polar form

$$
\begin{aligned}
Z & =r(\cos \theta+i \sin \theta) \\
& =5 \sqrt{2}\left[\cos 315^{\circ}+i \sin 315^{\circ}\right]=5 \sqrt{2}\left(i s 315^{\circ}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \quad z_{1}= r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \quad \text { and } \\
& z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \quad \text { then } \\
& z_{1} z_{2}=r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right) \text { and } \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left(\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right) r_{2} \neq 0 \\
& \text { Suppose } z_{1}=10\left(\cos 25^{\circ}+i \sin 25^{\circ}\right) \text { and } \\
& z_{2}=2\left(\cos 10^{\circ}+i \sin 10^{\circ}\right) \\
& z_{1} z_{2}=10 \cdot 2\left[\cos \left(25^{\circ}+10^{\circ}\right)+i \sin \left(25^{\circ}+10^{\circ}\right)\right] \\
&=20\left[\cos 35^{\circ}+i \sin 35^{\circ}\right]=20 \operatorname{cis} 35^{\circ} \\
& \frac{z_{1}}{z_{2}}=\frac{10}{2}\left[\cos \left(25^{\circ}-10^{\circ}\right)+i \sin \left(25^{\circ}-10^{\circ}\right)\right] \\
&=5\left[\cos 15^{\circ}+i \sin 15^{\circ}\right]=5 \operatorname{cis} 15^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\begin{aligned}
& z_{1}=6 \operatorname{Cis} 60^{\circ}, z_{2}=2 \operatorname{Cis} 30^{\circ} \\
& z_{1} z_{2}=6 \cdot 2 \operatorname{Cis} 90^{\circ}=12 \operatorname{Cis} 90^{\circ} \\
& 60^{\circ}+30^{\circ}=12\left[\cos 90^{\circ}+i \sin 90^{\circ}\right] \\
&=12 i \\
& 60^{\circ}-30^{\circ} \\
& \frac{z_{1}}{z_{2}}=\frac{6}{2} \operatorname{Cis} 30^{\circ}=3 \operatorname{Cis} 30^{\circ} \\
&=3\left[\cos 30^{\circ}+i \sin 30^{\circ}\right] \\
&=3\left[\frac{\sqrt{3}}{2}+i \cdot \frac{1}{2}\right]=\frac{3 \sqrt{3}}{2}+\frac{3}{2} i
\end{aligned}
\end{aligned}
$$

Suppose $\quad z_{1}=8 \operatorname{cis} \frac{2 \pi}{3}, z_{2}=6 \operatorname{cis} \frac{\pi}{4}$

$$
\begin{aligned}
& z_{1}=8 \operatorname{cis} 120^{\circ}, z_{2}=6 \operatorname{cis} 45^{\circ} \\
& z_{1} z_{2}=8.6 \operatorname{cis}\left(120^{\circ}+45^{\circ}\right) \\
&=48 \operatorname{cis} 165^{\circ}
\end{aligned}
$$

$$
\frac{Z_{1}}{Z_{2}}=\frac{8}{6} \operatorname{cis}\left(120^{\circ}-45^{\circ}\right)=\frac{4}{3} \operatorname{Cis} 75^{\circ}
$$

Feb 1-8:34 AM

$$
Z_{1}=4 \operatorname{cis} 45^{\circ} \quad Z_{2}=6 \operatorname{cis} 210^{\circ}
$$

1) Plot $z_{1} \varepsilon z_{2}$
2) find $z_{1} z_{2}$
3) find $\frac{z_{1}}{z_{2}}$

$$
\begin{aligned}
& z_{1} z_{2}=4.6 \operatorname{cis}\left(45^{\circ}+210^{\circ}\right)=24 \operatorname{cis} 255^{\circ} \\
& \frac{z_{1}}{z_{2}}=\frac{4}{6} \operatorname{cis}\left(45^{\circ}-210^{\circ}\right)=\frac{2}{3} \operatorname{cis}\left(-165^{\circ}\right) \\
& \frac{2}{3}\left[\cos 165^{\circ}-i \sin 165\right]^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& Z=4 \operatorname{CiS} 30^{\circ} \\
& \text { find } z^{2}=z z \\
& \left(4 \operatorname{Cis} 30^{\circ}\right)\left(4 \operatorname{Cis} 30^{\circ}\right) \\
& =4^{2} \operatorname{Cis} 2 \cdot 30^{\circ} \\
& z^{3}=Z^{2} z=\left(4^{2} \operatorname{cis} 2.30^{\circ}\right)\left(4 \operatorname{cis} 30^{\circ}\right) \\
& =4^{3} \operatorname{cis} 3 \cdot 30^{\circ} \\
& z^{6}=4^{6} \text { cis } 6.30^{\circ} \\
& \text { If } z=r \operatorname{cis} \theta \text {, then } \\
& z^{n}=r^{n} \operatorname{cis} n \theta
\end{aligned}
$$

$$
Z=2 \operatorname{Cis} 45^{\circ}
$$

find $z^{3}=2^{3} \operatorname{Cis} 3.45^{\circ}$

$$
\begin{aligned}
& =8 \operatorname{cis} 135^{\circ} \\
& =8\left[\cos 135^{\circ}+i \sin 135^{\circ}\right] \\
& =8\left[-\cos 45^{\circ}+i \sin 45^{\circ}\right] \\
& =8\left[-\frac{\sqrt{2}}{2}+i \cdot \frac{\sqrt{2}}{2}\right]=-4 \sqrt{2}+i \cdot 4 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Find }(\underbrace{1+i})^{20} \\
& \begin{aligned}
z & =1+i \\
Z & =\sqrt{2} \operatorname{cis} 45^{\circ} \\
Z^{20} & =(\sqrt{2})^{20} \operatorname{Cis} 20.45^{\circ} \\
& =1024 \operatorname{cis} 900^{\circ}=1024 \operatorname{Cis} 180^{\circ} \\
& =1024\left[\cos 180^{\circ}+i \sin 180^{\circ}\right] \\
& =-1024
\end{aligned}
\end{aligned}
$$

$$
z=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i
$$

$$
r=|z|=\sqrt{\left(\frac{\sqrt{2}}{2}\right)^{2}+\left(\frac{\sqrt{2}}{2}\right)^{2}}=1
$$

$$
\begin{aligned}
& z=r \operatorname{Cis} \theta \\
& Z=1 \operatorname{CiS} 315^{\circ} \quad Z^{12}= \\
& 3780-360^{\circ}=10.5 \\
& 10 \text { Revolution }+ \text { half of } \\
& \text { Rev. }
\end{aligned}
$$

$$
z^{12}=1^{12} \operatorname{cis} 12\left(3 / 5^{\circ}\right)
$$

$$
=\operatorname{CiS} 3780^{\circ}
$$

$$
=\operatorname{cis} 180^{\circ}
$$

$$
=\cos 180^{\circ}+i \sin 180^{\circ}
$$

$$
=-1
$$

Feb 1-9:06 AM
find the nth roots of z.

$$
\sqrt[n]{z}=\sqrt[n]{r} \text { (is } \frac{\theta+k \cdot 360^{\circ}}{n} \quad \text { for } \quad k=0,1,2, \ldots, n-1
$$

find all square roots of 4.

$$
z=4 \rightarrow z=4 \operatorname{cis} 0^{\circ}
$$

$$
=2 \operatorname{Cis} \frac{k \cdot 360^{\circ}}{2}
$$

$$
=2 \operatorname{Cisk} \cdot 180^{\circ}
$$

$\left.K=0 \rightarrow 2 \operatorname{Cis} 0^{\circ}=2\left[\cos 0^{\circ}+i \sin 0^{\circ}\right]=2\right]$

Feb 1-9:35 AM

$$
\begin{aligned}
& \text { find }(\underbrace{\frac{-1}{2}-\frac{\sqrt{3}}{2} i})^{15} \\
& z=\frac{-1}{2}-\frac{\sqrt{3}}{2} i \\
& r=|z|=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=1
\end{aligned}
$$

$$
\begin{aligned}
& z=r \operatorname{cis} \theta \quad z^{15}=1^{15} \operatorname{cis} 15.240^{\circ} \\
& z=1 \operatorname{CiS} 240^{\circ} \\
& =\operatorname{Cis} 3600^{\circ} \\
& =\operatorname{CiS} 0^{\circ}=\cos 0^{\circ}+i \sin 0^{\circ} \\
& z^{15}=\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)^{15}=1
\end{aligned}
$$

find all cube roots of -125 .

$-125=125 \mathrm{Cis} 180^{\circ}$

Feb 1-9:42 AM
find all 4th roots of $16 i$.

$$
\begin{aligned}
& z=16 i \\
& \sqrt[4]{z}=\sqrt[4]{16} \operatorname{cis} \frac{90^{\circ}+k \cdot 360^{\circ}}{4} \\
&=2 \operatorname{cis}\left(22.5^{\circ}+k \cdot 90^{\circ}\right) \\
& k=0 \rightarrow 2 \operatorname{cis} 22.5^{\circ} \\
& k=1 \rightarrow 2 \operatorname{cis} 112.5^{\circ} \\
& k=2 \rightarrow 2 \operatorname{cis} 202.5^{\circ} \\
& k=3 \rightarrow 2 \operatorname{cis} 292.5^{\circ}
\end{aligned}
$$

De Moivre's Theorem
find all cube roots of $z=2+2 i$

$$
\begin{aligned}
r=\sqrt{2^{2}+2^{2}} & =\sqrt{8} \quad \operatorname{lon}=3 \\
z= & \sqrt{8} \operatorname{cis} 45^{\circ} \\
\sqrt[3]{z} & =\sqrt[3]{\sqrt[2]{8}} \operatorname{cis} \frac{45^{\circ}+k \cdot 360^{\circ}}{3} \\
& =\sqrt[6]{8} \operatorname{cis}\left(15^{\circ}+k \cdot 120^{\circ}\right) \\
k=0 & \rightarrow \sqrt[6]{8} \operatorname{cis} 15^{\circ} \\
k=1 & \rightarrow \sqrt[6]{8} \operatorname{cis} 135^{\circ} \\
k=2 & \rightarrow \sqrt[6]{8} \operatorname{cis} 255^{\circ}
\end{aligned}
$$

Feb 1-9:57 AM
find all fifth roots of $-16-16 \sqrt{3} i$.

$$
\begin{aligned}
& \begin{aligned}
z & =-16-16 \sqrt{3} i \\
r & =|z| \\
& =\sqrt{(-16)^{2}+(-16 \sqrt{3})^{2}} \\
& =32 \\
z & =r \operatorname{cis} \theta
\end{aligned} \\
& =32 \operatorname{CiS} 240^{\circ} \\
& \sqrt[5]{z}=\sqrt[5]{32} \operatorname{cis} \frac{240^{\circ}+k \cdot 360^{\circ}}{5}=2 \operatorname{Cis}\left(48^{\circ}+k \cdot 72^{\circ}\right) \\
& K=0 \rightarrow 2 \operatorname{CiS} 48^{\circ} \\
& K=1 \rightarrow 2 \mathrm{Cis} 120^{\circ} \\
& k=2 \rightarrow 2 \operatorname{cis} 192^{\circ} \\
& k=3 \rightarrow 2 \operatorname{cis} 264^{\circ} \\
& K=4 \rightarrow 2 \operatorname{CiS} 336^{\circ}
\end{aligned}
$$

Feb 1-10:51 AM

Solve $z^{4}-625=0$

$$
z^{4}=625 \operatorname{cis} 0^{\circ}
$$

$$
z=\sqrt[4]{625} \operatorname{cis} \frac{0^{\circ}+k \cdot 360^{\circ}}{4}=5 \operatorname{cis} k \cdot 90^{\circ}
$$

$$
K=0 \rightarrow 5 \operatorname{cis} 0^{\circ}=5\left[\cos 0^{0}+i \sin 0^{\circ}\right]=5 \checkmark
$$

$$
k=1 \rightarrow 5 \operatorname{cis} 90^{\circ}=5\left[\cos ^{7} 90^{\circ}+i \sin ^{\circ} 90^{1}\right]=5 i \sqrt{ }
$$

$$
\begin{aligned}
& \text { Solve } z^{4}-625=0 \\
& 4 \text { Answers } \\
& \left(z^{2}-25\right)\left(z^{2}+25\right)=0 \\
& (z-5)(z+5)\left(z^{2}+25\right)=0 \\
& z-5=0 \quad z+5=0 \quad z^{2}+25=0 \\
& {\left[z=5 \quad\left[z=5 \quad z^{2}=-25\right.\right.} \\
& Z^{2}=25 \text { Cis } 180^{\circ} \\
& Z=\sqrt{25} \operatorname{cis} \frac{180^{\circ}+k \cdot 360^{\circ}}{2} \\
& \leftrightarrow \underbrace{8}_{r=2 y^{0}} 180^{\circ} \rightarrow \\
& =5 \text { (is }\left(70^{\circ}+K \cdot 180^{\circ}\right) \\
& \left.K=0 \rightarrow 5 \operatorname{cis} 90^{\circ}=5\left[\cos 90^{\circ}+i \sin 10^{\circ}\right]=15 i\right] \\
& \left.k=1 \rightarrow 5 \text { cis } 270^{\circ}=5\left[\cos 270^{\circ}+\cdots \cdot \sin 22^{-1} 70^{\circ}\right]=-5 i\right]
\end{aligned}
$$

Feb 1-11:01 AM

$$
\begin{array}{lr}
z_{1}=3 \operatorname{cis} \frac{\pi}{6} & z_{2}=5 \operatorname{cis} \frac{4 \pi}{3} \\
z_{1}=3 \operatorname{cis} 30^{\circ} & z_{2}=5 \operatorname{cis} 240^{\circ}
\end{array}
$$

find $z_{1} z_{2}$, and $\frac{z_{1}}{z_{2}}$

$$
\begin{aligned}
& z_{1} z_{2}=3.5 \operatorname{cis}\left(30^{\circ}+240^{\circ}\right)=15 \operatorname{cis} 270^{\circ} \\
& \frac{z_{1}}{z_{2}}=\frac{3}{5} \operatorname{cis}\left(30^{\circ}-240^{\circ}\right)=\frac{3}{5} \operatorname{cis}\left(-210^{\circ}\right) \\
& \frac{3}{5}\left[\cos \left(-210^{\circ}\right)+i \sin \left(-210^{\circ}\right)\right]=\frac{3}{5} \operatorname{cis}\left(150^{\circ}\right) \\
& \frac{3}{5}\left[\cos 210^{\circ}-i \sin 210^{\circ}\right]
\end{aligned}
$$

